A pr 2 00 6 An Ergodic Study of Painlevé VI ∗
نویسندگان
چکیده
An ergodic study of Painlevé VI is developed. The chaotic nature of its Poincaré return map is established for almost all loops. The exponential growth of the numbers of periodic solutions is also shown. Principal ingredients of the arguments are a moduli-theoretical formulation of Painlevé VI, a Riemann-Hilbert correspondence, the dynamical system of a birational map on a cubic surface, and the Lefschetz fixed point formula.
منابع مشابه
ar X iv : m at h - ph / 0 70 10 41 v 2 1 9 A pr 2 00 7 Coupled Painlevé VI system with E ( 1 ) 6 - symmetry
We present an new system of ordinary differential equations with affine Weyl group symmetry of type E (1) 6 . This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian. Introduction The Painlevé equations PJ (J = I, . . . ,VI) are ordinary differential equations of second order. It is known that these PJ admit the following affine Weyl group symmetri...
متن کاملPainlevé Vi Systems in Dimension Four with Affine Weyl Group Symmetry of Types
We find and study four kinds of 6-parameter family of coupled Painlevé VI systems with affine Weyl group symmetry of types B (1) 6 , D (1) 6 and D (2) 7 . We also give an explicit description of a confluence to the Noumi-Yamada system of type A (1) 5 . 0. Introduction In 1912, considering the significant problem of searching for higher order analogues of the Painlevé equations, Garnier discover...
متن کاملO ct 2 00 8 On Algebraic Solutions to Painlevé VI ∗
We announce some results which might bring a new insight into the classification of algebraic solutions to the sixth Painlevé equation. They consist of the rationality of parameters, trigonometric Diophantine conditions, and what the author calls the Tetrahedral Theorem regarding the absence of algebraic solutions in certain situations. The method is based on fruitful interactions between the m...
متن کاملar X iv : m at h - ph / 0 70 10 41 v 1 1 3 Ja n 20 07 Coupled Painlevé VI system with E ( 1 ) 6 - symmetry
We present an new system of ordinary differential equations with affine Weyl group symmetry of type E (1) 6 . This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian. 2000 Mathematics Subject Classification: 34M55, 17B80, 37K10. Introduction The Painlevé equations PJ (J = I, . . . ,VI) are ordinary differential equations of second order. It is know...
متن کاملA pr 2 00 8 Symmetry and holomorphy of the third - order ordinary differential equation defined by the third
We study symmetry and holomorphy of the third-order ordinary differential equation defined by the third Painlevé Hamiltonian.
متن کامل